Evidence that the endogenous heat-stable glucocorticoid receptor-activating factor is thioredoxin.

نویسندگان

  • J F Grippo
  • W Tienrungroj
  • M K Dahmer
  • P R Housley
  • W B Pratt
چکیده

Extraction of rat liver cytosol with 10% charcoal at 4 degrees C inactivates specific glucocorticoid-binding capacity. The steroid-binding capacity of extracted cytosol can be restored by adding dithiothreitol or by incubating with boiled liver cytosol at 20 degrees C in the presence of 10 mM sodium molybdate. Two components of boiled cytosol are required for receptor activation: NADPH and an endogenous heat-stable protein with an apparent Mr of 12,300 by Sephadex G-50 chromatography. This endogenous receptor-activating protein coelutes on Sephadex G-50 chromatography with endogenous thioredoxin activity, and it can be replaced in the activating system by purified Escherichia coli thioredoxin. These observations suggest that glucocorticoid receptors in cytosol preparations are maintained in a reduced, steroid-binding state by a NADPH-dependent, thioredoxin-mediated reducing system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that the endogenous heat-stable glucocorticoid receptor stabilizing factor is a metal component of the untransformed receptor complex.

Boiled cytosols prepared from a wide variety of sources contain a low Mr factor that inhibits glucocorticoid receptor transformation to the DNA-binding state (Leach, K.L., Grippo, J.F., Housley, P.R., Dahmer, M.K., Salive, M.E., and Pratt, W.B. (1982) J. Biol. Chem. 257, 381-388). In this work, we show that this endogenous factor, which is partially purified from rat liver, produces all of the ...

متن کامل

The heat-stable cytosolic factor that promotes glucocorticoid receptor binding to DNA is neither thioredoxin nor ribonuclease.

Treatment of rat liver cytosol containing temperature-transformed [3H]dexamethasone-bound receptors at 0 degree C with the sulfhydryl modifying reagent methyl methanethiosulfonate (MMTS) inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol (DTT). However, transformed receptors that are treated with MMTS and then separated from ...

متن کامل

Evidence that removal of an endogenous metal that stabilizes the untransformed glucocorticoid receptor in cytosol allows ligand-independent receptor transformation.

Cytosol preparations contain an endogenous heat-stable factor which stabilizes the glucocorticoid receptor in its untransformed, non DNA-binding form. Elution of a partially purified preparation of this stabilizing factor through a metal chelating resin (Chelex-100) leads to the loss of its ability to inhibit temperature-mediated transformation of the receptor. Sodium molybdate mimicks the abil...

متن کامل

Activation of thymocyte glucocorticoid receptors to the steroid binding form. The roles of reduction agents, ATP, and heat-stable factors.

The specific glucocorticoid binding capacity in cytosol preparations of rat thymocytes decays with a half-life of 4 h at 0 degrees C or 20 min at 25 degrees C. Phosphatase inhibitors (molybdate, fluoride, glucose 1-phosphate) added alone do not prevent this inactivation. Dithiothreitol (2 mM) has a large stabilizing effect on the binding capacity at 0 degrees C but only a small effect at 25 deg...

متن کامل

Transformation of glucocorticoid and progesterone receptors to the DNA-binding state.

This brief review explores some recent observations relating to the structure of untransformed glucocorticoid and progesterone receptors and the mechanism by which the receptors are transformed to the DNA-binding state. In their molybdatestabilized, untransformed state, progesterone and glucocorticoid receptors exist as a heteromeric 8-9S complex containing one unit of steroid binding phosphopr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 22  شماره 

صفحات  -

تاریخ انتشار 1983